kafka polling vs listen

In Kafka, polling and listening are two different approaches to consuming messages, and they correspond to different APIs or frameworks.


1. Kafka Polling

Polling refers to the use of Kafka's native poll() method in the Kafka Consumer API. It requires the consumer application to actively request messages from Kafka.

Key Characteristics:

  • Active Consumption:
    • The application explicitly calls poll() in a loop to fetch messages.
  • Manual Commit:
    • Developers can choose when to commit offsets, giving fine-grained control over processing and checkpointing.
  • Use Case:
    • Recommended for applications where control over message consumption, offset management, or threading is critical.

Example (Java):

Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("my-topic"));

try {
    while (true) {
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
        for (ConsumerRecord<String, String> record : records) {
            System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        }
    }
} finally {
    consumer.close();
}

Pros:

  • Fine-grained control over:
    • Message consumption.
    • Offset management.
    • Threading.
  • Useful for custom processing flows.

Cons:

  • More boilerplate code.
  • Requires handling retries and error cases manually.

2. Kafka Listening

Listening refers to a higher-level abstraction, typically used in frameworks like Spring Kafka. The application defines a listener method that is automatically invoked when new messages arrive.

Key Characteristics:

  • Passive Consumption:
    • The application doesn't call poll() directly; the framework manages it internally.
  • Automatic Offset Management:
    • Spring Kafka can automatically commit offsets after processing messages or provide options for manual commits.
  • Use Case:
    • Suitable for simpler applications that want easy integration and automatic message handling.

Example (Spring Boot):

import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;

@Service
public class KafkaMessageListener {

    @KafkaListener(topics = "my-topic", groupId = "group1")
    public void listen(String message) {
        System.out.println("Received message: " + message);
    }
}

Pros:

  • Minimal boilerplate code.
  • Built-in features like retries, error handling, and batch processing.
  • Faster development with Spring Boot.

Cons:

  • Less control over threading and offset management.
  • Tighter coupling with the Spring framework.

When to Use Polling vs. Listening

Feature Polling Listening
Use Case Complex, custom processing workflows Simple, fast development with Spring
Framework Kafka Consumer API Spring Kafka
Control High: Manual offset and threading control Low: Automated by Spring Kafka
Boilerplate More code required Minimal code
Flexibility Suitable for microservices and custom logic Ideal for integration into Spring projects

Key Recommendations

  • Use polling for low-level, custom control over Kafka behavior, or when using Kafka without Spring.
  • Use listening with Spring Kafka for applications requiring quick setup, integration, and built-in Kafka features.

If you'd like more examples or guidance on setting up a specific approach, let me know!

댓글

이 블로그의 인기 게시물

Using the MinIO API via curl

How to split a list into chunks of 100 items in JavaScript, 자바스크립트 리스트 쪼개기

HTML Inline divisions at one row by Tailwind

Boilerplate for typescript server programing

가속도 & 속도

Gradle multi-module project

How to checkout branch of remote git, 깃 리모트 브랜치 체크아웃

CDPEvents in puppeteer

Sparse encoder

Reactjs datetime range picker