kafka polling vs listen

In Kafka, polling and listening are two different approaches to consuming messages, and they correspond to different APIs or frameworks.


1. Kafka Polling

Polling refers to the use of Kafka's native poll() method in the Kafka Consumer API. It requires the consumer application to actively request messages from Kafka.

Key Characteristics:

  • Active Consumption:
    • The application explicitly calls poll() in a loop to fetch messages.
  • Manual Commit:
    • Developers can choose when to commit offsets, giving fine-grained control over processing and checkpointing.
  • Use Case:
    • Recommended for applications where control over message consumption, offset management, or threading is critical.

Example (Java):

Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("my-topic"));

try {
    while (true) {
        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
        for (ConsumerRecord<String, String> record : records) {
            System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        }
    }
} finally {
    consumer.close();
}

Pros:

  • Fine-grained control over:
    • Message consumption.
    • Offset management.
    • Threading.
  • Useful for custom processing flows.

Cons:

  • More boilerplate code.
  • Requires handling retries and error cases manually.

2. Kafka Listening

Listening refers to a higher-level abstraction, typically used in frameworks like Spring Kafka. The application defines a listener method that is automatically invoked when new messages arrive.

Key Characteristics:

  • Passive Consumption:
    • The application doesn't call poll() directly; the framework manages it internally.
  • Automatic Offset Management:
    • Spring Kafka can automatically commit offsets after processing messages or provide options for manual commits.
  • Use Case:
    • Suitable for simpler applications that want easy integration and automatic message handling.

Example (Spring Boot):

import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Service;

@Service
public class KafkaMessageListener {

    @KafkaListener(topics = "my-topic", groupId = "group1")
    public void listen(String message) {
        System.out.println("Received message: " + message);
    }
}

Pros:

  • Minimal boilerplate code.
  • Built-in features like retries, error handling, and batch processing.
  • Faster development with Spring Boot.

Cons:

  • Less control over threading and offset management.
  • Tighter coupling with the Spring framework.

When to Use Polling vs. Listening

Feature Polling Listening
Use Case Complex, custom processing workflows Simple, fast development with Spring
Framework Kafka Consumer API Spring Kafka
Control High: Manual offset and threading control Low: Automated by Spring Kafka
Boilerplate More code required Minimal code
Flexibility Suitable for microservices and custom logic Ideal for integration into Spring projects

Key Recommendations

  • Use polling for low-level, custom control over Kafka behavior, or when using Kafka without Spring.
  • Use listening with Spring Kafka for applications requiring quick setup, integration, and built-in Kafka features.

If you'd like more examples or guidance on setting up a specific approach, let me know!

댓글

이 블로그의 인기 게시물

PYTHONPATH, Python 모듈 환경설정

You can use Sublime Text from the command line by utilizing the subl command

git 명령어

[gRPC] server of Java and client of Typescript

[Ubuntu] Apache2.4.x 설치

Create topic on Kafka with partition count, 카프카 토픽 생성하기

리눅스의 부팅과정 (프로세스, 서비스 관리)

Auto-populate a calendar in an MUI (Material-UI) TextField component

The pierce selector in Puppeteer