Sparse output from sparse encoder
Let's create an example of a sparse output from a hypothetical sparse encoder. This encoder takes an input vector and outputs an encoded representation where most of the values are zero (i.e., sparse).
Example: Sparse Encoder Output
Input:
A dense input vector:
[0.9, 0.1, 0.8, 0.6, 0.2, 0.3]
Output:
A sparse encoded vector (after applying sparsity constraints, e.g., thresholding small values):
[0.9, 0.0, 0.8, 0.6, 0.0, 0.0]
Code Example (Python)
Here's a Python code snippet that demonstrates how sparsity might be applied to an encoder's output:
import numpy as np
# Example input: Dense vector
input_vector = np.array([0.9, 0.1, 0.8, 0.6, 0.2, 0.3])
# Sparsity threshold: Values below this are set to zero
threshold = 0.5
# Applying sparsity
sparse_output = np.where(input_vector > threshold, input_vector, 0.0)
print("Dense Input: ", input_vector)
print("Sparse Output: ", sparse_output)
Output:
Dense Input: [0.9 0.1 0.8 0.6 0.2 0.3]
Sparse Output: [0.9 0. 0.8 0.6 0. 0. ]
Explanation
- The thresholding operation introduces sparsity by zeroing out small values.
- The sparse output retains only the significant features (above the threshold).
Real-World Example in NLP (Sparse Attention)
In transformers like Longformer or Reformer, sparse outputs are achieved through sparse attention mechanisms. For example, if processing a sentence:
Input:["The", "cat", "sat", "on", "the", "mat"]
Attention Output (Sparse):
A sparse attention matrix focusing only on relevant words:
[
[1.0, 0.0, 0.0, 0.0, 0.5, 0.0],
[0.0, 1.0, 0.8, 0.0, 0.0, 0.0],
[0.0, 0.8, 1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0, 0.6, 0.0],
[0.5, 0.0, 0.0, 0.6, 1.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0]
]
Here, most connections have zero weight, reducing computation while maintaining key relationships.
Let me know if you'd like further details or code implementations!
댓글
댓글 쓰기