Sparse output from sparse encoder

Let's create an example of a sparse output from a hypothetical sparse encoder. This encoder takes an input vector and outputs an encoded representation where most of the values are zero (i.e., sparse).


Example: Sparse Encoder Output

Input:

A dense input vector:

[0.9, 0.1, 0.8, 0.6, 0.2, 0.3]

Output:

A sparse encoded vector (after applying sparsity constraints, e.g., thresholding small values):

[0.9, 0.0, 0.8, 0.6, 0.0, 0.0]

Code Example (Python)

Here's a Python code snippet that demonstrates how sparsity might be applied to an encoder's output:

import numpy as np

# Example input: Dense vector
input_vector = np.array([0.9, 0.1, 0.8, 0.6, 0.2, 0.3])

# Sparsity threshold: Values below this are set to zero
threshold = 0.5

# Applying sparsity
sparse_output = np.where(input_vector > threshold, input_vector, 0.0)

print("Dense Input: ", input_vector)
print("Sparse Output: ", sparse_output)

Output:

Dense Input:  [0.9 0.1 0.8 0.6 0.2 0.3]
Sparse Output:  [0.9 0.  0.8 0.6 0.  0. ]

Explanation

  • The thresholding operation introduces sparsity by zeroing out small values.
  • The sparse output retains only the significant features (above the threshold).

Real-World Example in NLP (Sparse Attention)

In transformers like Longformer or Reformer, sparse outputs are achieved through sparse attention mechanisms. For example, if processing a sentence:

Input:
["The", "cat", "sat", "on", "the", "mat"]

Attention Output (Sparse):
A sparse attention matrix focusing only on relevant words:

[
 [1.0, 0.0, 0.0, 0.0, 0.5, 0.0],
 [0.0, 1.0, 0.8, 0.0, 0.0, 0.0],
 [0.0, 0.8, 1.0, 0.0, 0.0, 0.0],
 [0.0, 0.0, 0.0, 1.0, 0.6, 0.0],
 [0.5, 0.0, 0.0, 0.6, 1.0, 0.0],
 [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]
]

Here, most connections have zero weight, reducing computation while maintaining key relationships.

Let me know if you'd like further details or code implementations!

댓글

이 블로그의 인기 게시물

CDPEvents in puppeteer

Using the MinIO API via curl

How to split a list into chunks of 100 items in JavaScript, 자바스크립트 리스트 쪼개기

Declaration of custom object or type in Node.js

HTML Inline divisions at one row by Tailwind

Boilerplate for typescript server programing

How to checkout branch of remote git, 깃 리모트 브랜치 체크아웃

Gradle multi-module project

가속도 & 속도

Sparse encoder