Let's create an example of a sparse output from a hypothetical sparse encoder. This encoder takes an input vector and outputs an encoded representation where most of the values are zero (i.e., sparse). Example: Sparse Encoder Output Input : A dense input vector: [ 0.9 , 0.1 , 0.8 , 0.6 , 0.2 , 0.3 ] Output : A sparse encoded vector (after applying sparsity constraints, e.g., thresholding small values): [ 0.9 , 0.0 , 0.8 , 0.6 , 0.0 , 0.0 ] Code Example (Python) Here's a Python code snippet that demonstrates how sparsity might be applied to an encoder's output: import numpy as np # Example input: Dense vector input_vector = np. array ([ 0.9 , 0.1 , 0.8 , 0.6 , 0.2 , 0.3 ]) # Sparsity threshold: Values below this are set to zero threshold = 0.5 # Applying sparsity sparse_output = np.where(input_vector > threshold, input_vector, 0.0 ) print ( "Dense Input: " , input_vector) print ( "Sparse Output: " , sparse_output) Output : Dense...